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Today’s Lecture

 Asymptotic Analysis
 Dominance
 Asymptotic Bounds and Input Data Cases
 Analyzing Code
 Space Complexity
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Categorizing Cars by Speed

 From a speed perspective, which category does 
this vehicle belong to?
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Category 1

Sports cars

Category 3

Economy cars
Category 2

Full size cars

???



Categorizing Cars by Speed

 From a speed perspective, which category does 
this vehicle belong to?

© 2023 Arthur Hoskey. All 
rights reserved.

Category 1

Sports cars

Category 3

Economy cars
Category 2

Full size cars

Answer

It belongs to category 

2 (full size cars)



Categorizing Cars by Speed

 In the previous example we put a car into a 
category based on speed.

 By figuring out the category a car belongs to we 
can get a general idea about how fast it can 
drive.

 If we are told that a car belongs to the sports car 
category, we may not know its exact 
characteristics, but we do have a general idea 
about its capabilities.
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Categorizing Cars by Speed vs 
Asymptotic Analysis

 Asymptotic analysis allows us to put algorithms 
into categories just like we did with the cars.

 We just want to be able to identify an algorithm's 
speed in terms of a general category.

 If we are told that an algorithm belongs to a 
certain category, we may not know its exact 
characteristics, but we do have a general idea 
about its capabilities.
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Categorizing Functions

 Which category does the following function 
belong to?
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Category 1

Log
Category 3

Quadratic

Category 2

Linear

???



Categorizing Functions

 Which category does the following function 
belong to?
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Category 1

Log
Category 3

Quadratic

Category 2

Linear

Answer

It belongs to category 2 

(linear)

f(n) = ½ * n

This function grows linearly. 

It is not exactly the same as 

other linear functions, but it 

does grow similarly to them 

as n gets large (as opposed 

to log or quadratic functions).



Comparing Functions

 Which function returns higher values as n grows?
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log n

2 log n



Comparing Functions

 Which function returns higher values as n grows?
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log n

2 log n

Answer

2 log n returns 

"higher" values as 

n grows



Manipulating Functions

 What constant value (say c) can we multiply log n by 
to make it return higher values than 2 log n?
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c log n

2 log n

Set c to a value that will 

make this line go above the 

blue line.



Manipulating Functions

 What constant value (say c) can we multiply log n by 
to make it return higher values than 2 log n?
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log n

2 log n

Answer

Yes! We can set c to 3.

3 log n returns higher 

values than 2 log n as n 

grows. 

3 log n

(c=3)



Asymptotic Analysis

 Now on to asymptotic analysis…
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Asymptotic Analysis

 Asymptotic Efficiency of Algorithms - Look at input sizes 
large enough to make only the order of growth of the running 
time relevant.

 Focus on how the running time of an algorithm increases with the 
size of the input in the limit, as the size of the input increases 
without bound. 

 Most of the time an algorithm that is asymptotically more efficient 
will be the best choice for all but very small inputs.

Taken from: Introduction to Algorithms, 3rd edition, by Cormen, 
Leiserson, Rivest, and Stein, 2009.
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Asymptotic Notation

 We will cover the following three asymptotic notations.

 Big O. Upper bound. g(n) is an upper bound of f(n).

 f n  ∈ 𝑂(𝑔 𝑛)

 Big Omega. Lower bound. g(n) is a lower bound of f(n). 

 f n  ∈ Ω(𝑔 𝑛)

 Big Theta. Upper and lower bound. g(n) is both and upper and 
lower bound of f(n).

 f n  ∈ Θ(𝑔 𝑛)

The element of symbol (∈ ) is used above because O(), Ω(), and Θ() 
are sets of functions.
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Big O

 Big O. Bounded above.

𝑂(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

 Show Upper Bound. To show that f(n) is an element of 
O(g(n)) we must find constants c and n0 to make the 
above true.

 The next slide shows a graph containing c and n0…
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Big O

 Big O. Bounded above.
𝑂(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎 }

Taken from: Introduction to Algorithms, 3rd edition, by Cormen, Leiserson, 
Rivest, and Stein, 2009.
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Bounded 

Above

Beyond 𝑛0 f(n) 

stays BELOW 

the bound

Goal

Find values of 

c and n0 that 

make the 

relation true 

(any positive 

constants are 

fine)



Show f(n) is O(g(n))

Sample O()

 Show: 2n ∈ O(n)

 Show that this relation holds: 0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎 
 Given 2n ∈ O(n) what are f(n) and g(n)? 

So f(n)=2n, g(n)=n

 Plugin in f(n) and g(n) and then find positive constants c and n0 
such that the relation is true:

0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎 

0 ≤ 2𝑛 ≤ 𝒄𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎 
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What value of c will make 

cn GREATER than 2n?
What value of n0 will 

guarantee that 2n is 

ALWAYS less than cn?

f(n) g(n)

Replace f(n) 

and g(n) in 

relation



Show f(n) is O(g(n))

Sample O() (continued)

 Show: 2n ∈ O(n)

    f(n) = 2n

    g(n) = n

    

    Show the relation:     0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

    Fill in f(n) and g(n): 0 ≤ 𝟐𝒏 ≤ 𝑐𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 

    Will c=1 work?           0 ≤ 2𝑛 ≤ 𝟏𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 

    To find n0, try some values of n to see what happens as n gets larger:
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Is there a value 

for n0 where the 

relation holds?

n 2n 1n

1 2 1

10 20 10

100 200 100

1000 2000 1000

10000 20000 10000

c=1 DOES NOT WORK!!!

As n increases 2n will always 

be greater than 1n. There is 

no value of n where 2n 

becomes greater than 1n. So, 

there is no value of n0 that 

will make the relation true.

1n is always less. BAD!



Show f(n) is O(g(n))

Sample O() (continued)

 Show: 2n ∈ O(n)

    f(n) = 2n

    g(n) = n

    

    Show the relation:     0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

    Fill in f(n) and g(n): 0 ≤ 𝟐𝒏 ≤ 𝑐𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 

    Will c=3 work?           0 ≤ 2𝑛 ≤ 𝟑𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 

    To find n0, try some values of n to see what happens as n gets larger:

 Answer: c=3, n0=10

 There are many other values of c and n0 that will work.
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n 2n 3n

1 2 3

10 20 30

100 200 300

1000 2000 3000

10000 20000 30000

YES, c=3 WORKS

As n increases 3n will always be 

greater than 2n. We can now choose an 

n0. For example, n0 = 10.

2n ∈ O(n) is true since there are 

constants c and n0 that make the 

relation true.



Showing O() Upper Bound

Summary - Showing f(n) ∈ O(g(n))

 To show that something is O() you must find constants c and n0 
that make the relation below true:

𝑂(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎 }

General Outline of Approach

1. Replace f(n) and g(n) with the specific functions.

2. Choose a value for c.

3. Check values of n to see what happens as n gets very large.

4. If there is a value of n where f(n) is always less than cg(n) then 
f(n) ∈ O(g(n)). Choose n0 such that f(n) is always less than 
cg(n). If there are NO values of c and n0 that make the relation 
true, then f(n) is NOT an element of O(g(n).

5. Your final answer should be the values of c and n0 that make 
the relation true.
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In Class Exercise

Inclass Exercise (Big O)

Answer the following?

 Is 3n2 ∈ O(n2)?
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Show f(n) is not O(g(n))

Proof by Contradiction

 Assume you have a statement you want to prove, say P.

 With proof by contradiction, we first assume what we want 
to prove is not true. We then show that this results in 
something that is not possible.

 Outline of proof by contradiction (¬ stands for negation).
◦ Assume the negation of P is true, ¬P

◦ Find a contradiction (something that is not possible). This could mean 
we reach a conclusion that contradicts our original assumption or a 
conclusion that contradicts something we know of that is true. Use 
logical steps to reach the conclusion (for example, algebraic 
manipulations).

◦ Therefore, our assumption cannot be true which means the negation of 
our original assumption is true. So, ¬¬P which implies P.
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Show f(n) is not O(g(n))

Sample O()

 Show: n2 is NOT ∈ O(n)

 Use proof by contradiction.

 We want to show that values of c and n0 cannot exist.

 First, assume the opposite is true. ¬(n2 is NOT ∈ O(n)) is the 
same as n2 ∈ O(n)

 If n2 ∈ O(n) then there are c and n0 that make the following true: 
0 ≤ 𝑛2 ≤ 𝑐𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎

 Use algebra to simplify the relation (divide by n in this case).

 We get the following: 0 ≤ 𝑛 ≤ 𝑐 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎

 The above will fail for values of n > c. THIS IS A 
CONTRADICTION! Remember, n will go to infinity, so n is 
guaranteed to exceed c at some point (c is constant). When n 
exceeds c, we have a contradiction of our original assumption.

 This contradiction means that our assumption n2 ∈ O(n) cannot 
be true. So ¬(n2 ∈ O(n)) must be true.

 Therefore, n2 is NOT ∈ O(n).
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In Class Exercise

Inclass Exercise (Big O)

Answer the following?

 Is n3 ∈ O(n2)?
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Big Omega

 Big Omega. Bounded below.

Ω(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 } 

 Show Lower Bound. To show that f(n) is an element of 
𝛀(g(n)) we must find constants c and n0 to make the 
above true.

 The next slide shows a graph containing c and n0…
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cg(n) and f(n) are switched 

when compared to O()



Big Omega

 Big Omega. Bounded below.

 Ω(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 } 

Taken from: Introduction to Algorithms, 3rd edition, by Cormen, Leiserson, 
Rivest, and Stein, 2009.
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Bounded 

Below

Beyond 𝑛0 f(n) 

stays ABOVE 

the bound

Goal

Find values of 

c and n0 that 

make the 

relation true 

(any positive 

constants are 

fine)



Show f(n) is Ω(g(n))

Sample 𝛀()

 Show: 3n ∈ 𝛀(n)

 Given 3n ∈ Ω(n) what are f(n) and g(n)? 

So f(n)=3n, g(n)=n

 We must find positive constants c and n0 such that the following 
holds:

0 ≤ 𝒄𝑔 𝑛 ≤ 𝑓 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎 

0 ≤ 𝒄𝑛 ≤ 3𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎 
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What value of c will make 

cn LESS than 3n?
What value of n0 will 

guarantee that 3n is 

always greater than cn?

f(n) g(n)

Replace f(n) 

and g(n) in 

relation



Show f(n) is Ω(g(n))

Sample 𝛀() (continued)

 Show: 3n ∈ 𝛀(n)

    f(n) = 3n

    g(n) = n

    

    Show the relation:     0 ≤ 𝑐𝑔(𝑛) ≤ 𝑓 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

    Fill in f(n) and g(n): 0 ≤ 𝑐𝒏 ≤ 𝟑𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 

    Will c=5 work?           0 ≤ 𝟓𝑛 ≤ 3𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 

    To find n0, try some values of n to see what happens as n gets larger:
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n 5n 3n

1 5 3

10 50 30

100 500 300

1000 5000 3000

10000 50000 30000

c=5 DOES NOT WORK!!!

As n increases 5n will always 

be greater than 3n. There is 

no value of n where 5n 

becomes LESS than 3n. So, 

there is no value of n0 that 

will make the relation true.

5n is always above. BAD!

Is there a value 

for n0 where the 

relation holds?



Show f(n) is Ω(g(n))

Sample 𝛀() (continued)

 Show: 3n ∈ 𝛀(n)

    f(n) = 3n

    g(n) = n

    

    Show the relation:     0 ≤ 𝑐𝑔(𝑛) ≤ 𝑓 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

    Fill in f(n) and g(n): 0 ≤ 𝑐𝒏 ≤ 𝟑𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 

    Will c=2 work?           0 ≤ 𝟐𝑛 ≤ 3𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 

    To find n0, try some values of n to see what happens as n gets larger:

 Answer: c=2, n0=10

 There are many other values of c and n0 that will work.
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n 2n 3n

1 2 3

10 20 30

100 200 300

1000 2000 3000

10000 20000 30000

YES, c=2 WORKS

As n increases 2n will always be 

less than 3n. We can now choose 

an n0. For example, n0 = 10.

3n ∈ 𝛀(n) is true since there are 

constants c and n0 that make the 

relation true.



In Class Exercise

Inclass Exercise (Big Omega)

Answer the following?

 Is 3n2 ∈ 𝛺(n2)?

 Is 3n2 ∈ 𝛺(n)?

 Is 3n2 ∈ 𝛺(n3)?

© 2023 Arthur Hoskey. All 
rights reserved.



Big Theta

 Big Theta. Bounded both above and below.

Θ(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐1, 𝑐2, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

 Show Both Upper and Lower Bounds. To show that f(n) is 
an element of 𝚯(g(n)) we must find constants c1, c2, and 
n0 to make the above true.

 The next slide shows a graph containing c1, c2, and n0…

© 2023 Arthur Hoskey. All 
rights reserved.

Lower 

bound
Upper 

bound



Big Theta

 Big Theta. Bounded both above and below.
Θ(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐1, 𝑐2, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 } 

Taken from: Introduction to Algorithms, 3rd edition, by Cormen, Leiserson, 
Rivest, and Stein, 2009.
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Bounded 

Above 

and 

Below

Goal

Find values of 

c1, c2, and n0 

that make the 

relation true 

(any positive 

constants are 

fine)
Beyond 𝑛0 f(n) 

stays 

BETWEEN 

both bounds



Show f(n) is Θ(g(n))

Sample 𝚯()

 Show: 4n ∈ 𝚯(n)

 Given 4n ∈ Θ(n) what are f(n) and g(n)? 

So f(n)=4n, g(n)=n

 We must find positive constants c1, c2, and n0 such that the 
following holds:

0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

0 ≤ 𝒄𝟏 𝑛 ≤ 4𝑛 ≤ 𝒄𝟐 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

© 2023 Arthur Hoskey. All 
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What value of c1 will 

make c1n LESS than 4n?

What value of n0 

will guarantee 

that 4n is 

BETWEEN both 

bounds?

f(n) g(n)

Replace f(n) 

and g(n) in 

relation

What value of c2 will make 

c2n GREATER than 4n?



Show f(n) is Θ(g(n))

Sample 𝚯() (continued)

 Show: 4n ∈ 𝚯(n)

    f(n) = 4n

    g(n) = n

    

    Show the relation:       0 ≤ 𝑐1 𝑔 𝑛 ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

    Fill in f(n) and g(n):    0 ≤ 𝑐1 𝒏 ≤ 𝟒𝒏 ≤ 𝑐2 𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

    Will c1=5,c2=8 work? 0 ≤ 𝟓𝑛 ≤ 4𝑛 ≤ 𝟖𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

    To find n0, try some values of n to see what happens as n gets larger:
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rights reserved.

n 5n 4n 8n

1 5 4 8

10 50 40 80

100 500 400 800

1000 5000 4000 8000

10000 50000 40000 80000

c1=5, c2=8 DOES NOT WORK!!!

As n increases 5n will always 

be greater than 4n. There is no 

value of n where 5n becomes 

LESS than 4n. So, there is no 

value of n0 that will make the 

relation true.

BAD lower 

bound

GOOD upper 

bound

Is there a value 

for n0 where the 

relation holds?



Show f(n) is Θ(g(n))

Sample 𝚯() (continued)

 Show: 4n ∈ 𝚯(n)

    f(n) = 4n

    g(n) = n

    

    Show the relation:       0 ≤ 𝑐1 𝑔 𝑛 ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

    Fill in f(n) and g(n):    0 ≤ 𝑐1 𝒏 ≤ 𝟒𝒏 ≤ 𝑐2 𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

    Will c1=3,c2=8 work? 0 ≤ 𝟑𝑛 ≤ 4𝑛 ≤ 𝟖𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

    To find n0, try some values of n to see what happens as n gets larger:

 Answer: c1=3, c2=8, n0=10

 There are many other values of c1, c2, and n0 that will work.
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YES, c1=3, c2=8 WORKS

As n increases 3n will always be 

BETWEEN both bounds. We can 

now choose an n0. For example, n0 = 

10.

4n ∈ 𝚯(n) is true since there are 

constants c1, c2, and n0 that make 

the relation true.

n 3n 4n 8n

1 3 4 8

10 30 40 80

100 300 400 800

1000 3000 4000 8000

10000 30000 40000 80000



In Class Exercise

Inclass Exercise (Big Theta)

Answer the following?

 Is 2n ∈ 𝛩(n2)?

 Is 2n ∈ 𝑂(n2)?

 Is 3n ∈ 𝛩(n)?
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Yes, that is big O



Asymptotic Notation Summary

 Big O. Bounded above.

𝑂(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

 Big Omega. Bounded below.

 Ω(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 } 

 Big Theta. Bounded both above and below.

Θ(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐1, 𝑐2, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 } 

Taken from: Introduction to Algorithms, 3rd edition, by Cormen, 
Leiserson, Rivest, and Stein, 2009.
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Limits

 Check math fundamentals slides if you need a 
review of basic limits…
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Dominance

 Now we will move on to dominance…
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Limits and Dominance

 If the denominator overwhelms or dominates the 
numerator it will cause the limit to go to 0.

 In the following example, if f(n) dominates g(n) 
then the limit will go to 0. 

lim
𝑛→∞

𝑔(𝑛)/𝑓(𝑛)

 For example…
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Find Dominance Using Limit

 Assume the following:
f(n) = n2

g(n) = n

 Find the limit:
lim

𝑛→∞
𝑔(𝑛)/𝑓(𝑛)

 Substitute functions:
lim

𝑛→∞
𝑛/𝑛2

 Simplify:
lim

𝑛→∞
1/𝑛

 Result:
lim

𝑛→∞
1/𝑛 = 0

© 2023 Arthur Hoskey. All 
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n2 dominates n 

because this 

limit goes to 0



Dominance and Simplifying

 We can use the fact that one function dominates 
another to further simplify expressions when doing 
asymptotic analysis.

 Assume f(n)=n2+n

 We can simplify this expression to the following since 
n2 dominates n: f(n) = n2

 If we are not sure about if one term dominates 
another, we can plug those terms into the limit and 
do the calculation.

 Put the term you think should dominate in f(n) and 
the other in g(n).

 If the following limit goes to 0 then f(n) dominates 
g(n)

lim
𝑛→∞

𝑔(𝑛)/𝑓(𝑛)
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Much Less Than and Much Greater 
Than

 The << symbol in mathematics can be used to 
indicate that one function is much less than another 
function. 

 For example: n << n2

 This says that n is much less than n2. Basically, n is 
dominated by n2.

 The >> symbol means much greater than.
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Selected Dominance Relationships

 Here is a hierarchy of selected functions showing 
dominance relationships.

 1 << log n << n << n log n << n2 << 2n << n!

 1 stands for any constant function.

 log n stands for the base 2 log (base 2 log is log2 n).

 n log n is n times log n

 The is not an exhaustive list.

 Note – The following are also true for >>:

n! >> 2n >> n2 >> n log n >> n >> log n >> 1

© 2023 Arthur Hoskey. All 
rights reserved.

Exponential

Quadratic FactorialLinearConstant



Asymptotic Bounds and Input Data 
Cases

 Now we will move on to asymptotic bounds and 
input data cases…
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Cases

 Input Cases - We are also interested in how an 
algorithm performs with different cases of input. The 
amount of work an algorithm will need to do can vary 
according to the input data.

◦ Best Case Input – How does it perform with the best possible 
set of input data. 

◦ Average Case Input – How does it perform with an average 
set of input data.

◦ Worst Case Input – How does it perform with the worst 
possible set of input data.
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Bounds != Input Case

Bound != Input Case

 Asymptotic bounds indicate what happens as the 
input size moves towards infinity.

 We can calculate asymptotic bounds separately 
for the best, average, and worst cases of input 
data.

 Big O is sometimes confused with "worst case" 
but they are not the same thing.

 Big O can be applied to best, average, and worst 
cases of input data (big O is just an upper 
bound).
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Analyzing Code

 Analyzing code…
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Math Review - log

Math Review - log
 Log is exponent!

 loga b = x

 Same as above but in exponential form:
ax = b

 We want to find the power that a must be raised to that 
will result in b. 

 For example:
log2 8 = x
2x = 8 

 Solve for x. 2 raised to what power is 8? 
Answer: 3.

© 2023 Arthur Hoskey. All 
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a is base b is some number



Math Review - log

 As n grows larger the result of log2 n grows slowly.

© 2023 Arthur Hoskey. All 
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n is up to 1024 but log2 1024 

is only up to 10

n Log of n Result

2 log2 2 1

4 log2 4 2

8 log2 8 3

16 log2 16 4

32 log2 32 5

64 log2 64 6

128 log2 128 7

256 log2 256 8

512 log2 512 9

1024 log2 1024 10



Math Review - log

 Assume n=1024.
 How many times do you need to divide n in half to make it 

get to 1?
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Math Review - log

 Assume n=1024.
 How many times do you need to divide n in half to make it 

get to 1?

Answer
 If n is 1024 and you divide it by 2 you get 512.
 If n is   512 and you divide it by 2 you get 256.
 If n is   256 and you divide it by 2 you get 128.
 If n is   128 and you divide it by 2 you get   64.
 If n is     64 and you divide it by 2 you get   32.
 If n is     32 and you divide it by 2 you get   16.
 If n is     16 and you divide it by 2 you get     8.
 If n is       8 and you divide it by 2 you get     4.
 If n is       4 and you divide it by 2 you get     2.
 If n is       2 and you divide it by 2 you get     1.

© 2023 Arthur Hoskey. All 
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10 

divisions

The log function tells us how many times we divide by 

the base to get down to 1. For example: log2 1024 = 10



Math Review - log

 Assume n=64.
 How many times do you need to divide n by 4 to make it 

get to 1?

Answer
 If n is     64 and you divide it by 4 you get   16.
 If n is     16 and you divide it by 4 you get   4.
 If n is     4 and you divide it by 4 you get     1.

 log4 64 = 3 
 43 = 64

© 2023 Arthur Hoskey. All 
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3 

divisions

The base is 4 in this example. We divide 64 by 

4 a total of 3 times to make it get to 1.



Math Review – log and 
exponential

 The log is the inverse of the exponential.

 210=2*2*2*2*2*2*2*2*2*2=1024.
 log2 1024 = 10

 Now divide 1024 by 2. This will cause one 2 to be removed 
from 210 which turns it into 29.

 210=2*2*2*2*2*2*2*2*2*2 = 1024 →
 29  =2*2*2*2*2*2*2*2*2    =   512

 log2 1024=10 and the log2 512=9. The log goes down by 1 
when dividing by 2.

 Note: The log goes up by 1 when multiplying the number 
by 2. For example, 512*2=1024 so the log goes up by 1 in 
this case.
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Divide 

by 2



Analyzing Code - Overview

Analyzing Code

 Determine the relationship between the number of instructions 
executed and the number of items.

 How much "work" gets done with respect to the number of items 
(n).

 Loops can cause lots of work to be done.

 Methods can cause lots of work to be done.

© 2023 Arthur Hoskey. All 
rights reserved.



Analyzing Code - Loops

Analyzing Loops

 Look carefully at loops to see how much work they do (how 
many times the loop body executes).

 Look at the loop control variable and think about how it is 
being updated.

 The loop may go significantly more or less than n times 
depending on how the loop control variable is being 
updated (it does not have to to use ++ or – when 
updating).
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Analyzing Code – Methods

Analyzing Methods

 Methods will cause a certain amount of work to be done. 

 Assume method A() has a time complexity of O(n).

 If method B() calls method A() then method B() will be 
doing at least O(n) work (possibly more depending on the 
code in B()).
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Analyzing Code - Overview

Analyzing Code

 O(1) - Executed instructions does not depend on the number of 
items (n) in any way. The number of executed instructions 
remains constant.

 O(log n) - Executed instructions has a logarithmic relationship 
with the number of items (n). For example, a binary search. It 
keeps splitting the number of items in half.

 O(n) – Executed instructions has a linear relationship with the 
number of items (n). For example, a loop that processes every 
item.

 O(n2) - Executed instructions has a quadratic relationship with the 
number of items (n). For example, nested loops that both depend 
on the number of items (n).
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Analyzing Code

Analyze Code – Example 1

Declare int a

a = 1

Print a

© 2023 Arthur Hoskey. All 
rights reserved.

What is the 

upper bound?



Analyzing Code

Analyze Code – Example 1

Declare int a

a = 1

Print a

 There are 3 instructions below.

 Each instruction is executed once no matter what.

 The number of times each instruction runs does NOT 
depend on the number of items (n) in any way.

Answer: O(3) → O(3*1) → O(1)
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Does NOT depend 

on the number of 

items (n) 

What is the 

upper bound?

O(1)



Analyzing Code

Analyze Code – Example 2

Declare int n

Declare int i = 0

Read n from keyboard

While (i<n)

   print "I love CS"

   i++

EndWhile

© 2023 Arthur Hoskey. All 
rights reserved.

What is the 

upper bound?



Analyzing Code

Analyze Code – Example 2

Declare int n

Declare int i = 0

Read n from keyboard

While (i<n)

   print "I love CS"

   i++

EndWhile

Answer: O(1) + O(n) → O(n)
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O(1)

O(n)

What is the 

upper bound?

O(n)



Analyzing Code

Analyze Code – Example 3

Declare int n

Declare int i = 0

print "I love CS"

print "I love CS"

print "I love CS"

print "I love CS"

print "I love CS"
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rights reserved.

What is the 

upper bound?



Analyzing Code

Analyze Code – Example 3

Declare int n

Declare int i = 0

print "I love CS"

print "I love CS"

print "I love CS"

print "I love CS"

print "I love CS"

Answer: O(1)

 The same instruction is being executed but it gets executed 
a constant number of times.

© 2023 Arthur Hoskey. All 
rights reserved.

O(1)

What is the 

upper bound?

O(1)



Analyzing Code

Analyze Code – Example 4

Declare int n

Declare int i = 0

While (i<5)

   print "I love CS"

   i++

EndWhile

© 2023 Arthur Hoskey. All 
rights reserved.

What is the 

upper bound?



Analyzing Code

Analyze Code – Example 4

Declare int n

Declare int i = 0

While (i<5)

   print "I love CS"

   i++

EndWhile

Answer: O(1) + O(1) → O(1)

 There is a loop but the number of times the loop body gets 
executed is constant.

 The loop does not depend on the number of items (n).
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O(1)

O(1)

What is the 

upper bound?

O(1)



Analyzing Code

Analyze Code – Example 5

Declare int n

Declare int i = 0

Read n from keyboard

While (i<5)

   print n

   print "I love CS"

   i++

EndWhile

© 2023 Arthur Hoskey. All 
rights reserved.

What is the 

upper bound?



Analyzing Code

Analyze Code – Example 5

Declare int n

Declare int i = 0

Read n from keyboard

While (i<5)

   print n

   print "I love CS"

   i++

EndWhile

Answer: O(1) + O(1) → O(1)

 The value n is printed in the loop, but it does not change how 
many times the loop executes.
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O(1)

O(1)

What is the 

upper bound?

O(1)



Analyzing Code

Analyze Code – Example 6

Declare int n

Declare int a = 0

Declare int b = 0

Read n from keyboard

While (a<n)

   While (b<n)

      print "I love CS"

      b++

   EndWhile

   a++

EndWhile

© 2023 Arthur Hoskey. All 
rights reserved.

What is the 

upper bound?



Analyzing Code

Analyze Code – Example 6

Declare int n

Declare int a = 0

Declare int b = 0

Read n from keyboard

While (a<n)

   While (b<n)

      print "I love CS"

      b++

   EndWhile

   a++

EndWhile

Answer: O(1) + O(n2) → O(n2)
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O(1)

O(n2)

What is the 

upper bound?

O(n2)



Analyzing Code

Analyze Code – Example 7

Boolean Search(int[] data, int target)

   Declare int startIndex = 0

   Declare int endIndex = data.length-1

   Declare int pivot

   While (startIndex<=endIndex)

      pivot = Floor((startIndex+endIndex)/2)

      if (target == data[pivot]) 

         return true

      else if (target>data[pivot])

         startIndex=pivot+1

      else

         endIndex=pivot-1

   EndWhile

   return false

© 2023 Arthur Hoskey. All 
rights reserved.

What is the 

upper bound?



Analyzing Code

Analyze Code – Example 7

Boolean Search(int[] data, int target)

   Declare int startIndex = 0

   Declare int endIndex = data.length-1

   Declare int pivot

   While (startIndex<=endIndex)

      pivot = Floor((startIndex+endIndex)/2)

      if (target == data[pivot]) 

         return true

      else if (target>data[pivot])

         startIndex=pivot+1

      else

         endIndex=pivot-1

   EndWhile

   return false

 Answer: O(1) + O(log n) + O(1) → O(log n)

 The pivot keeps getting divided in half, so it is logarithmic.
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O(1)

O(log n)

O(1)

What is the 

upper bound?

O(log n)



Analyzing Code

Analyze Code – Example 8

Declare int n

Declare int choice

Declare int i = 0

Enter choice from keyboard

If (choice == 1)

   print "I love CS"

Else

   Enter n from keyboard

   While (i<n)

      print "I love CS"

      i++

   EndWhile

EndIf

© 2023 Arthur Hoskey. All 
rights reserved.

What is the 

upper bound?



Analyzing Code

Analyze Code – Example 8

Declare int n

Declare int choice

Declare int i = 0

Enter choice from keyboard

If (choice == 1)

   print "I love CS"

Else

   Enter n from keyboard

   While (i<n)

      print "I love CS"

      i++

   EndWhile

EndIf

Answer: O(1) + O(n) → O(n)

 Even though the true part of the if may only run it is possible for the else to run.

 Since the else depends on the number of items, the whole if also depends on it.
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O(1)

O(1)

What is the 

upper bound?

O(n)

O(n)

O(n)

(whole if 

statement)



Analyzing Code

Analyze Code – Example 9

void ShowMessage(int x)

   Declare int i = 0

   While (i<x)

      print "I love CS"

      i++

   EndWhile

Main

   Declare int n

   Enter n from keyboard

   ShowMessage(n)
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rights reserved.

What is the 

upper bound?



Analyzing Code

Analyze Code – Example 9

void ShowMessage(int x)

   Declare int i = 0

   While (i<x)

      print "I love CS"

      i++

   EndWhile

Main

   Declare int n

   Enter n from keyboard

   ShowMessage(n)

 Answer: O(1) + O(n) → O(n)

 The amount of work to do in the ShowMessage method depends on the value 
of parameter x.

 Main calls ShowMessage and passes in a value entered by the user (n), so the 
amount of work that gets done in ShowMessage will depend on n.
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O(n)

O(1)

What is the 

upper bound?

O(n)

O(n)



Space Complexity

 Space complexity…
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Space Complexity

Space Complexity

 Space Complexity - The total space used by the algorithm.

 Input Space – Memory space used by inputs.
◦ Variables used to store input data (these could be collections).

 Auxiliary Space – Any other memory used during execution of the 
algorithm.
◦ Variables used in calculations.

◦ Extra collections that store copies of all the original data.

 n is the number of items we are processing.

 Taken from: https://en.wikipedia.org/wiki/Space_complexity
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https://en.wikipedia.org/wiki/Space_complexity


Space Complexity

Space Complexity Example 1

Declare int[] ar

Read n pieces of data into

   ar from a file

For all data in ar (i is loop variable)

    print ar[i]
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What is the upper bound 

on space (give total, 

input, and auxiliary)?



Space Complexity

Space Complexity Example 1

Declare int[] ar

Read n pieces of data into

   ar from a file

For all data in ar (i is loop variable)

    print ar[i]

Answer 

 Input Space: O(n)

 Auxiliary Space: O(1)

 Total Space: O(n) + O(1) → O(n)
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What is the upper bound 

on space (give total, 

input, and auxiliary)?



Space Complexity

Space Complexity Example 2

Declare int[] salary

Declare int[] salaryWithRaise

Read n pieces of data into 

   salary from a file

For all data in salary (i is loop variable)

    salaryWithRaise[i] = salary[i] + 10
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What is the upper bound 

on space (give total, 

input, and auxiliary)?



Space Complexity

Space Complexity Example 2

Declare int[] salary

Declare int[] salaryWithRaise

Read n pieces of data into 

   salary from a file

For all data in salary (i is loop variable)

    salaryWithRaise[i] = salary[i] + 10

Answer 

 Input Space: O(n)

 Auxiliary Space: O(n) + O(1) → O(n)

 Total Space: O(n) + O(n) → O(n)
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What is the upper bound 

on space (give total, 

input, and auxiliary)?

There is an extra n element 

array allocated 

(salaryWithRaise) so O(n) 

auxiliary space is used



Space Complexity

Space Complexity Example 3

void Show(int i, int[] a)

   If (i == a.length)

      return

  print a[i]

  Show(i+1, a)

Main

   Declare int[] ar

   Read n pieces of data into

      ar from a file

   Show(0, ar)
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What is the upper bound 

on space (give total, 

input, and auxiliary)?



Space Complexity

Space Complexity Example 3

void Show(int i, int[] a)

   If (i == a.length)

      return

  print a[i]

  Show(i+1, a)

Main

   Declare int[] ar

   Read n pieces of data into

      ar from a file

   Show(0, ar)

Answer 

 Input Space: O(n)

 Auxiliary Space: O(n) + O(1) → O(n)

 Total Space: O(n) + O(n) → O(n)

© 2023 Arthur Hoskey. All 
rights reserved.

What is the upper bound 

on space (give total, 

input, and auxiliary)?

Show. There are n+1 calls to show (because of 

recursion). Each recursive call allocates local 

variables. So, n sets of local variables will be on the 

call stack when the base case is reached. Calls to 

Show cost O(n) auxiliary space.

Main. O(n) space for input and 

O(1) space loop variables.
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 End of Slides
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