
Algorithms
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Asymptotic Analysis
 Dominance
 Asymptotic Bounds and Input Data Cases
 Analyzing Code
 Space Complexity

© 2023 Arthur Hoskey. All
rights reserved.

Categorizing Cars by Speed

 From a speed perspective, which category does
this vehicle belong to?

© 2023 Arthur Hoskey. All
rights reserved.

Category 1

Sports cars

Category 3

Economy cars
Category 2

Full size cars

???

Categorizing Cars by Speed

 From a speed perspective, which category does
this vehicle belong to?

© 2023 Arthur Hoskey. All
rights reserved.

Category 1

Sports cars

Category 3

Economy cars
Category 2

Full size cars

Answer

It belongs to category

2 (full size cars)

Categorizing Cars by Speed

 In the previous example we put a car into a
category based on speed.

 By figuring out the category a car belongs to we
can get a general idea about how fast it can
drive.

 If we are told that a car belongs to the sports car
category, we may not know its exact
characteristics, but we do have a general idea
about its capabilities.

© 2023 Arthur Hoskey. All
rights reserved.

Categorizing Cars by Speed vs
Asymptotic Analysis

 Asymptotic analysis allows us to put algorithms
into categories just like we did with the cars.

 We just want to be able to identify an algorithm's
speed in terms of a general category.

 If we are told that an algorithm belongs to a
certain category, we may not know its exact
characteristics, but we do have a general idea
about its capabilities.

© 2023 Arthur Hoskey. All
rights reserved.

Categorizing Functions

 Which category does the following function
belong to?

© 2023 Arthur Hoskey. All
rights reserved.

Category 1

Log
Category 3

Quadratic

Category 2

Linear

???

Categorizing Functions

 Which category does the following function
belong to?

© 2023 Arthur Hoskey. All
rights reserved.

Category 1

Log
Category 3

Quadratic

Category 2

Linear

Answer

It belongs to category 2

(linear)

f(n) = ½ * n

This function grows linearly.

It is not exactly the same as

other linear functions, but it

does grow similarly to them

as n gets large (as opposed

to log or quadratic functions).

Comparing Functions

 Which function returns higher values as n grows?

© 2023 Arthur Hoskey. All
rights reserved.

log n

2 log n

Comparing Functions

 Which function returns higher values as n grows?

© 2023 Arthur Hoskey. All
rights reserved.

log n

2 log n

Answer

2 log n returns

"higher" values as

n grows

Manipulating Functions

 What constant value (say c) can we multiply log n by
to make it return higher values than 2 log n?

© 2023 Arthur Hoskey. All
rights reserved.

c log n

2 log n

Set c to a value that will

make this line go above the

blue line.

Manipulating Functions

 What constant value (say c) can we multiply log n by
to make it return higher values than 2 log n?

© 2023 Arthur Hoskey. All
rights reserved.

log n

2 log n

Answer

Yes! We can set c to 3.

3 log n returns higher

values than 2 log n as n

grows.

3 log n

(c=3)

Asymptotic Analysis

 Now on to asymptotic analysis…

© 2023 Arthur Hoskey. All
rights reserved.

Asymptotic Analysis

 Asymptotic Efficiency of Algorithms - Look at input sizes
large enough to make only the order of growth of the running
time relevant.

 Focus on how the running time of an algorithm increases with the
size of the input in the limit, as the size of the input increases
without bound.

 Most of the time an algorithm that is asymptotically more efficient
will be the best choice for all but very small inputs.

Taken from: Introduction to Algorithms, 3rd edition, by Cormen,
Leiserson, Rivest, and Stein, 2009.

© 2023 Arthur Hoskey. All
rights reserved.

Asymptotic Notation

 We will cover the following three asymptotic notations.

 Big O. Upper bound. g(n) is an upper bound of f(n).

 f n ∈ 𝑂(𝑔 𝑛)

 Big Omega. Lower bound. g(n) is a lower bound of f(n).

 f n ∈ Ω(𝑔 𝑛)

 Big Theta. Upper and lower bound. g(n) is both and upper and
lower bound of f(n).

 f n ∈ Θ(𝑔 𝑛)

The element of symbol (∈) is used above because O(), Ω(), and Θ()
are sets of functions.

© 2023 Arthur Hoskey. All
rights reserved.

Big O

 Big O. Bounded above.

𝑂(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

 Show Upper Bound. To show that f(n) is an element of
O(g(n)) we must find constants c and n0 to make the
above true.

 The next slide shows a graph containing c and n0…

© 2023 Arthur Hoskey. All
rights reserved.

Big O

 Big O. Bounded above.
𝑂(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎 }

Taken from: Introduction to Algorithms, 3rd edition, by Cormen, Leiserson,
Rivest, and Stein, 2009.

© 2023 Arthur Hoskey. All
rights reserved.

Bounded

Above

Beyond 𝑛0 f(n)

stays BELOW

the bound

Goal

Find values of

c and n0 that

make the

relation true

(any positive

constants are

fine)

Show f(n) is O(g(n))

Sample O()

 Show: 2n ∈ O(n)

 Show that this relation holds: 0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎
 Given 2n ∈ O(n) what are f(n) and g(n)?

So f(n)=2n, g(n)=n

 Plugin in f(n) and g(n) and then find positive constants c and n0
such that the relation is true:

0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎

0 ≤ 2𝑛 ≤ 𝒄𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎

© 2023 Arthur Hoskey. All
rights reserved.

What value of c will make

cn GREATER than 2n?
What value of n0 will

guarantee that 2n is

ALWAYS less than cn?

f(n) g(n)

Replace f(n)

and g(n) in

relation

Show f(n) is O(g(n))

Sample O() (continued)

 Show: 2n ∈ O(n)

 f(n) = 2n

 g(n) = n

 Show the relation: 0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Fill in f(n) and g(n): 0 ≤ 𝟐𝒏 ≤ 𝑐𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Will c=1 work? 0 ≤ 2𝑛 ≤ 𝟏𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 To find n0, try some values of n to see what happens as n gets larger:

© 2023 Arthur Hoskey. All
rights reserved.

Is there a value

for n0 where the

relation holds?

n 2n 1n

1 2 1

10 20 10

100 200 100

1000 2000 1000

10000 20000 10000

c=1 DOES NOT WORK!!!

As n increases 2n will always

be greater than 1n. There is

no value of n where 2n

becomes greater than 1n. So,

there is no value of n0 that

will make the relation true.

1n is always less. BAD!

Show f(n) is O(g(n))

Sample O() (continued)

 Show: 2n ∈ O(n)

 f(n) = 2n

 g(n) = n

 Show the relation: 0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Fill in f(n) and g(n): 0 ≤ 𝟐𝒏 ≤ 𝑐𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Will c=3 work? 0 ≤ 2𝑛 ≤ 𝟑𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 To find n0, try some values of n to see what happens as n gets larger:

 Answer: c=3, n0=10

 There are many other values of c and n0 that will work.

© 2023 Arthur Hoskey. All
rights reserved.

n 2n 3n

1 2 3

10 20 30

100 200 300

1000 2000 3000

10000 20000 30000

YES, c=3 WORKS

As n increases 3n will always be

greater than 2n. We can now choose an

n0. For example, n0 = 10.

2n ∈ O(n) is true since there are

constants c and n0 that make the

relation true.

Showing O() Upper Bound

Summary - Showing f(n) ∈ O(g(n))

 To show that something is O() you must find constants c and n0
that make the relation below true:

𝑂(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
0 ≤ 𝑓 𝑛 ≤ 𝒄𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎 }

General Outline of Approach

1. Replace f(n) and g(n) with the specific functions.

2. Choose a value for c.

3. Check values of n to see what happens as n gets very large.

4. If there is a value of n where f(n) is always less than cg(n) then
f(n) ∈ O(g(n)). Choose n0 such that f(n) is always less than
cg(n). If there are NO values of c and n0 that make the relation
true, then f(n) is NOT an element of O(g(n).

5. Your final answer should be the values of c and n0 that make
the relation true.

© 2023 Arthur Hoskey. All
rights reserved.

In Class Exercise

Inclass Exercise (Big O)

Answer the following?

 Is 3n2 ∈ O(n2)?

© 2023 Arthur Hoskey. All
rights reserved.

Show f(n) is not O(g(n))

Proof by Contradiction

 Assume you have a statement you want to prove, say P.

 With proof by contradiction, we first assume what we want
to prove is not true. We then show that this results in
something that is not possible.

 Outline of proof by contradiction (¬ stands for negation).
◦ Assume the negation of P is true, ¬P

◦ Find a contradiction (something that is not possible). This could mean
we reach a conclusion that contradicts our original assumption or a
conclusion that contradicts something we know of that is true. Use
logical steps to reach the conclusion (for example, algebraic
manipulations).

◦ Therefore, our assumption cannot be true which means the negation of
our original assumption is true. So, ¬¬P which implies P.

© 2023 Arthur Hoskey. All
rights reserved.

Show f(n) is not O(g(n))

Sample O()

 Show: n2 is NOT ∈ O(n)

 Use proof by contradiction.

 We want to show that values of c and n0 cannot exist.

 First, assume the opposite is true. ¬(n2 is NOT ∈ O(n)) is the
same as n2 ∈ O(n)

 If n2 ∈ O(n) then there are c and n0 that make the following true:
0 ≤ 𝑛2 ≤ 𝑐𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎

 Use algebra to simplify the relation (divide by n in this case).

 We get the following: 0 ≤ 𝑛 ≤ 𝑐 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎

 The above will fail for values of n > c. THIS IS A
CONTRADICTION! Remember, n will go to infinity, so n is
guaranteed to exceed c at some point (c is constant). When n
exceeds c, we have a contradiction of our original assumption.

 This contradiction means that our assumption n2 ∈ O(n) cannot
be true. So ¬(n2 ∈ O(n)) must be true.

 Therefore, n2 is NOT ∈ O(n).

© 2023 Arthur Hoskey. All
rights reserved.

In Class Exercise

Inclass Exercise (Big O)

Answer the following?

 Is n3 ∈ O(n2)?

© 2023 Arthur Hoskey. All
rights reserved.

Big Omega

 Big Omega. Bounded below.

Ω(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

 Show Lower Bound. To show that f(n) is an element of
𝛀(g(n)) we must find constants c and n0 to make the
above true.

 The next slide shows a graph containing c and n0…

© 2023 Arthur Hoskey. All
rights reserved.

cg(n) and f(n) are switched

when compared to O()

Big Omega

 Big Omega. Bounded below.

 Ω(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

Taken from: Introduction to Algorithms, 3rd edition, by Cormen, Leiserson,
Rivest, and Stein, 2009.

© 2023 Arthur Hoskey. All
rights reserved.

Bounded

Below

Beyond 𝑛0 f(n)

stays ABOVE

the bound

Goal

Find values of

c and n0 that

make the

relation true

(any positive

constants are

fine)

Show f(n) is Ω(g(n))

Sample 𝛀()

 Show: 3n ∈ 𝛀(n)

 Given 3n ∈ Ω(n) what are f(n) and g(n)?

So f(n)=3n, g(n)=n

 We must find positive constants c and n0 such that the following
holds:

0 ≤ 𝒄𝑔 𝑛 ≤ 𝑓 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎

0 ≤ 𝒄𝑛 ≤ 3𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝒏𝟎

© 2023 Arthur Hoskey. All
rights reserved.

What value of c will make

cn LESS than 3n?
What value of n0 will

guarantee that 3n is

always greater than cn?

f(n) g(n)

Replace f(n)

and g(n) in

relation

Show f(n) is Ω(g(n))

Sample 𝛀() (continued)

 Show: 3n ∈ 𝛀(n)

 f(n) = 3n

 g(n) = n

 Show the relation: 0 ≤ 𝑐𝑔(𝑛) ≤ 𝑓 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Fill in f(n) and g(n): 0 ≤ 𝑐𝒏 ≤ 𝟑𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Will c=5 work? 0 ≤ 𝟓𝑛 ≤ 3𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 To find n0, try some values of n to see what happens as n gets larger:

© 2023 Arthur Hoskey. All
rights reserved.

n 5n 3n

1 5 3

10 50 30

100 500 300

1000 5000 3000

10000 50000 30000

c=5 DOES NOT WORK!!!

As n increases 5n will always

be greater than 3n. There is

no value of n where 5n

becomes LESS than 3n. So,

there is no value of n0 that

will make the relation true.

5n is always above. BAD!

Is there a value

for n0 where the

relation holds?

Show f(n) is Ω(g(n))

Sample 𝛀() (continued)

 Show: 3n ∈ 𝛀(n)

 f(n) = 3n

 g(n) = n

 Show the relation: 0 ≤ 𝑐𝑔(𝑛) ≤ 𝑓 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Fill in f(n) and g(n): 0 ≤ 𝑐𝒏 ≤ 𝟑𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Will c=2 work? 0 ≤ 𝟐𝑛 ≤ 3𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 To find n0, try some values of n to see what happens as n gets larger:

 Answer: c=2, n0=10

 There are many other values of c and n0 that will work.

© 2023 Arthur Hoskey. All
rights reserved.

n 2n 3n

1 2 3

10 20 30

100 200 300

1000 2000 3000

10000 20000 30000

YES, c=2 WORKS

As n increases 2n will always be

less than 3n. We can now choose

an n0. For example, n0 = 10.

3n ∈ 𝛀(n) is true since there are

constants c and n0 that make the

relation true.

In Class Exercise

Inclass Exercise (Big Omega)

Answer the following?

 Is 3n2 ∈ 𝛺(n2)?

 Is 3n2 ∈ 𝛺(n)?

 Is 3n2 ∈ 𝛺(n3)?

© 2023 Arthur Hoskey. All
rights reserved.

Big Theta

 Big Theta. Bounded both above and below.

Θ(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐1, 𝑐2, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

 Show Both Upper and Lower Bounds. To show that f(n) is
an element of 𝚯(g(n)) we must find constants c1, c2, and
n0 to make the above true.

 The next slide shows a graph containing c1, c2, and n0…

© 2023 Arthur Hoskey. All
rights reserved.

Lower

bound
Upper

bound

Big Theta

 Big Theta. Bounded both above and below.
Θ(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐1, 𝑐2, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

Taken from: Introduction to Algorithms, 3rd edition, by Cormen, Leiserson,
Rivest, and Stein, 2009.

© 2023 Arthur Hoskey. All
rights reserved.

Bounded

Above

and

Below

Goal

Find values of

c1, c2, and n0

that make the

relation true

(any positive

constants are

fine)
Beyond 𝑛0 f(n)

stays

BETWEEN

both bounds

Show f(n) is Θ(g(n))

Sample 𝚯()

 Show: 4n ∈ 𝚯(n)

 Given 4n ∈ Θ(n) what are f(n) and g(n)?

So f(n)=4n, g(n)=n

 We must find positive constants c1, c2, and n0 such that the
following holds:

0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

0 ≤ 𝒄𝟏 𝑛 ≤ 4𝑛 ≤ 𝒄𝟐 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

© 2023 Arthur Hoskey. All
rights reserved.

What value of c1 will

make c1n LESS than 4n?

What value of n0

will guarantee

that 4n is

BETWEEN both

bounds?

f(n) g(n)

Replace f(n)

and g(n) in

relation

What value of c2 will make

c2n GREATER than 4n?

Show f(n) is Θ(g(n))

Sample 𝚯() (continued)

 Show: 4n ∈ 𝚯(n)

 f(n) = 4n

 g(n) = n

 Show the relation: 0 ≤ 𝑐1 𝑔 𝑛 ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Fill in f(n) and g(n): 0 ≤ 𝑐1 𝒏 ≤ 𝟒𝒏 ≤ 𝑐2 𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Will c1=5,c2=8 work? 0 ≤ 𝟓𝑛 ≤ 4𝑛 ≤ 𝟖𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 To find n0, try some values of n to see what happens as n gets larger:

© 2023 Arthur Hoskey. All
rights reserved.

n 5n 4n 8n

1 5 4 8

10 50 40 80

100 500 400 800

1000 5000 4000 8000

10000 50000 40000 80000

c1=5, c2=8 DOES NOT WORK!!!

As n increases 5n will always

be greater than 4n. There is no

value of n where 5n becomes

LESS than 4n. So, there is no

value of n0 that will make the

relation true.

BAD lower

bound

GOOD upper

bound

Is there a value

for n0 where the

relation holds?

Show f(n) is Θ(g(n))

Sample 𝚯() (continued)

 Show: 4n ∈ 𝚯(n)

 f(n) = 4n

 g(n) = n

 Show the relation: 0 ≤ 𝑐1 𝑔 𝑛 ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Fill in f(n) and g(n): 0 ≤ 𝑐1 𝒏 ≤ 𝟒𝒏 ≤ 𝑐2 𝒏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 Will c1=3,c2=8 work? 0 ≤ 𝟑𝑛 ≤ 4𝑛 ≤ 𝟖𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0

 To find n0, try some values of n to see what happens as n gets larger:

 Answer: c1=3, c2=8, n0=10

 There are many other values of c1, c2, and n0 that will work.

© 2023 Arthur Hoskey. All
rights reserved.

YES, c1=3, c2=8 WORKS

As n increases 3n will always be

BETWEEN both bounds. We can

now choose an n0. For example, n0 =

10.

4n ∈ 𝚯(n) is true since there are

constants c1, c2, and n0 that make

the relation true.

n 3n 4n 8n

1 3 4 8

10 30 40 80

100 300 400 800

1000 3000 4000 8000

10000 30000 40000 80000

In Class Exercise

Inclass Exercise (Big Theta)

Answer the following?

 Is 2n ∈ 𝛩(n2)?

 Is 2n ∈ 𝑂(n2)?

 Is 3n ∈ 𝛩(n)?

© 2023 Arthur Hoskey. All
rights reserved.

Yes, that is big O

Asymptotic Notation Summary

 Big O. Bounded above.

𝑂(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

 Big Omega. Bounded below.

 Ω(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

 Big Theta. Bounded both above and below.

Θ(𝑔 𝑛) = { 𝑓 𝑛 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑐1, 𝑐2, 𝑛0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛0 }

Taken from: Introduction to Algorithms, 3rd edition, by Cormen,
Leiserson, Rivest, and Stein, 2009.

© 2023 Arthur Hoskey. All
rights reserved.

Limits

 Check math fundamentals slides if you need a
review of basic limits…

© 2023 Arthur Hoskey. All
rights reserved.

Dominance

 Now we will move on to dominance…

© 2023 Arthur Hoskey. All
rights reserved.

Limits and Dominance

 If the denominator overwhelms or dominates the
numerator it will cause the limit to go to 0.

 In the following example, if f(n) dominates g(n)
then the limit will go to 0.

lim
𝑛→∞

𝑔(𝑛)/𝑓(𝑛)

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Find Dominance Using Limit

 Assume the following:
f(n) = n2

g(n) = n

 Find the limit:
lim

𝑛→∞
𝑔(𝑛)/𝑓(𝑛)

 Substitute functions:
lim

𝑛→∞
𝑛/𝑛2

 Simplify:
lim

𝑛→∞
1/𝑛

 Result:
lim

𝑛→∞
1/𝑛 = 0

© 2023 Arthur Hoskey. All
rights reserved.

n2 dominates n

because this

limit goes to 0

Dominance and Simplifying

 We can use the fact that one function dominates
another to further simplify expressions when doing
asymptotic analysis.

 Assume f(n)=n2+n

 We can simplify this expression to the following since
n2 dominates n: f(n) = n2

 If we are not sure about if one term dominates
another, we can plug those terms into the limit and
do the calculation.

 Put the term you think should dominate in f(n) and
the other in g(n).

 If the following limit goes to 0 then f(n) dominates
g(n)

lim
𝑛→∞

𝑔(𝑛)/𝑓(𝑛)

© 2023 Arthur Hoskey. All
rights reserved.

Much Less Than and Much Greater
Than

 The << symbol in mathematics can be used to
indicate that one function is much less than another
function.

 For example: n << n2

 This says that n is much less than n2. Basically, n is
dominated by n2.

 The >> symbol means much greater than.

© 2023 Arthur Hoskey. All
rights reserved.

Selected Dominance Relationships

 Here is a hierarchy of selected functions showing
dominance relationships.

 1 << log n << n << n log n << n2 << 2n << n!

 1 stands for any constant function.

 log n stands for the base 2 log (base 2 log is log2 n).

 n log n is n times log n

 The is not an exhaustive list.

 Note – The following are also true for >>:

n! >> 2n >> n2 >> n log n >> n >> log n >> 1

© 2023 Arthur Hoskey. All
rights reserved.

Exponential

Quadratic FactorialLinearConstant

Asymptotic Bounds and Input Data
Cases

 Now we will move on to asymptotic bounds and
input data cases…

© 2023 Arthur Hoskey. All
rights reserved.

Cases

 Input Cases - We are also interested in how an
algorithm performs with different cases of input. The
amount of work an algorithm will need to do can vary
according to the input data.

◦ Best Case Input – How does it perform with the best possible
set of input data.

◦ Average Case Input – How does it perform with an average
set of input data.

◦ Worst Case Input – How does it perform with the worst
possible set of input data.

© 2023 Arthur Hoskey. All
rights reserved.

Bounds != Input Case

Bound != Input Case

 Asymptotic bounds indicate what happens as the
input size moves towards infinity.

 We can calculate asymptotic bounds separately
for the best, average, and worst cases of input
data.

 Big O is sometimes confused with "worst case"
but they are not the same thing.

 Big O can be applied to best, average, and worst
cases of input data (big O is just an upper
bound).

© 2023 Arthur Hoskey. All
rights reserved.

Analyzing Code

 Analyzing code…

© 2023 Arthur Hoskey. All
rights reserved.

Math Review - log

Math Review - log
 Log is exponent!

 loga b = x

 Same as above but in exponential form:
ax = b

 We want to find the power that a must be raised to that
will result in b.

 For example:
log2 8 = x
2x = 8

 Solve for x. 2 raised to what power is 8?
Answer: 3.

© 2023 Arthur Hoskey. All
rights reserved.

a is base b is some number

Math Review - log

 As n grows larger the result of log2 n grows slowly.

© 2023 Arthur Hoskey. All
rights reserved.

n is up to 1024 but log2 1024

is only up to 10

n Log of n Result

2 log2 2 1

4 log2 4 2

8 log2 8 3

16 log2 16 4

32 log2 32 5

64 log2 64 6

128 log2 128 7

256 log2 256 8

512 log2 512 9

1024 log2 1024 10

Math Review - log

 Assume n=1024.
 How many times do you need to divide n in half to make it

get to 1?

© 2023 Arthur Hoskey. All
rights reserved.

Math Review - log

 Assume n=1024.
 How many times do you need to divide n in half to make it

get to 1?

Answer
 If n is 1024 and you divide it by 2 you get 512.
 If n is 512 and you divide it by 2 you get 256.
 If n is 256 and you divide it by 2 you get 128.
 If n is 128 and you divide it by 2 you get 64.
 If n is 64 and you divide it by 2 you get 32.
 If n is 32 and you divide it by 2 you get 16.
 If n is 16 and you divide it by 2 you get 8.
 If n is 8 and you divide it by 2 you get 4.
 If n is 4 and you divide it by 2 you get 2.
 If n is 2 and you divide it by 2 you get 1.

© 2023 Arthur Hoskey. All
rights reserved.

10

divisions

The log function tells us how many times we divide by

the base to get down to 1. For example: log2 1024 = 10

Math Review - log

 Assume n=64.
 How many times do you need to divide n by 4 to make it

get to 1?

Answer
 If n is 64 and you divide it by 4 you get 16.
 If n is 16 and you divide it by 4 you get 4.
 If n is 4 and you divide it by 4 you get 1.

 log4 64 = 3
 43 = 64

© 2023 Arthur Hoskey. All
rights reserved.

3

divisions

The base is 4 in this example. We divide 64 by

4 a total of 3 times to make it get to 1.

Math Review – log and
exponential

 The log is the inverse of the exponential.

 210=2*2*2*2*2*2*2*2*2*2=1024.
 log2 1024 = 10

 Now divide 1024 by 2. This will cause one 2 to be removed
from 210 which turns it into 29.

 210=2*2*2*2*2*2*2*2*2*2 = 1024 →
 29 =2*2*2*2*2*2*2*2*2 = 512

 log2 1024=10 and the log2 512=9. The log goes down by 1
when dividing by 2.

 Note: The log goes up by 1 when multiplying the number
by 2. For example, 512*2=1024 so the log goes up by 1 in
this case.

© 2023 Arthur Hoskey. All
rights reserved.

Divide

by 2

Analyzing Code - Overview

Analyzing Code

 Determine the relationship between the number of instructions
executed and the number of items.

 How much "work" gets done with respect to the number of items
(n).

 Loops can cause lots of work to be done.

 Methods can cause lots of work to be done.

© 2023 Arthur Hoskey. All
rights reserved.

Analyzing Code - Loops

Analyzing Loops

 Look carefully at loops to see how much work they do (how
many times the loop body executes).

 Look at the loop control variable and think about how it is
being updated.

 The loop may go significantly more or less than n times
depending on how the loop control variable is being
updated (it does not have to to use ++ or – when
updating).

© 2023 Arthur Hoskey. All
rights reserved.

Analyzing Code – Methods

Analyzing Methods

 Methods will cause a certain amount of work to be done.

 Assume method A() has a time complexity of O(n).

 If method B() calls method A() then method B() will be
doing at least O(n) work (possibly more depending on the
code in B()).

© 2023 Arthur Hoskey. All
rights reserved.

Analyzing Code - Overview

Analyzing Code

 O(1) - Executed instructions does not depend on the number of
items (n) in any way. The number of executed instructions
remains constant.

 O(log n) - Executed instructions has a logarithmic relationship
with the number of items (n). For example, a binary search. It
keeps splitting the number of items in half.

 O(n) – Executed instructions has a linear relationship with the
number of items (n). For example, a loop that processes every
item.

 O(n2) - Executed instructions has a quadratic relationship with the
number of items (n). For example, nested loops that both depend
on the number of items (n).

© 2023 Arthur Hoskey. All
rights reserved.

Analyzing Code

Analyze Code – Example 1

Declare int a

a = 1

Print a

© 2023 Arthur Hoskey. All
rights reserved.

What is the

upper bound?

Analyzing Code

Analyze Code – Example 1

Declare int a

a = 1

Print a

 There are 3 instructions below.

 Each instruction is executed once no matter what.

 The number of times each instruction runs does NOT
depend on the number of items (n) in any way.

Answer: O(3) → O(3*1) → O(1)

© 2023 Arthur Hoskey. All
rights reserved.

Does NOT depend

on the number of

items (n)

What is the

upper bound?

O(1)

Analyzing Code

Analyze Code – Example 2

Declare int n

Declare int i = 0

Read n from keyboard

While (i<n)

 print "I love CS"

 i++

EndWhile

© 2023 Arthur Hoskey. All
rights reserved.

What is the

upper bound?

Analyzing Code

Analyze Code – Example 2

Declare int n

Declare int i = 0

Read n from keyboard

While (i<n)

 print "I love CS"

 i++

EndWhile

Answer: O(1) + O(n) → O(n)

© 2023 Arthur Hoskey. All
rights reserved.

O(1)

O(n)

What is the

upper bound?

O(n)

Analyzing Code

Analyze Code – Example 3

Declare int n

Declare int i = 0

print "I love CS"

print "I love CS"

print "I love CS"

print "I love CS"

print "I love CS"

© 2023 Arthur Hoskey. All
rights reserved.

What is the

upper bound?

Analyzing Code

Analyze Code – Example 3

Declare int n

Declare int i = 0

print "I love CS"

print "I love CS"

print "I love CS"

print "I love CS"

print "I love CS"

Answer: O(1)

 The same instruction is being executed but it gets executed
a constant number of times.

© 2023 Arthur Hoskey. All
rights reserved.

O(1)

What is the

upper bound?

O(1)

Analyzing Code

Analyze Code – Example 4

Declare int n

Declare int i = 0

While (i<5)

 print "I love CS"

 i++

EndWhile

© 2023 Arthur Hoskey. All
rights reserved.

What is the

upper bound?

Analyzing Code

Analyze Code – Example 4

Declare int n

Declare int i = 0

While (i<5)

 print "I love CS"

 i++

EndWhile

Answer: O(1) + O(1) → O(1)

 There is a loop but the number of times the loop body gets
executed is constant.

 The loop does not depend on the number of items (n).

© 2023 Arthur Hoskey. All
rights reserved.

O(1)

O(1)

What is the

upper bound?

O(1)

Analyzing Code

Analyze Code – Example 5

Declare int n

Declare int i = 0

Read n from keyboard

While (i<5)

 print n

 print "I love CS"

 i++

EndWhile

© 2023 Arthur Hoskey. All
rights reserved.

What is the

upper bound?

Analyzing Code

Analyze Code – Example 5

Declare int n

Declare int i = 0

Read n from keyboard

While (i<5)

 print n

 print "I love CS"

 i++

EndWhile

Answer: O(1) + O(1) → O(1)

 The value n is printed in the loop, but it does not change how
many times the loop executes.

© 2023 Arthur Hoskey. All
rights reserved.

O(1)

O(1)

What is the

upper bound?

O(1)

Analyzing Code

Analyze Code – Example 6

Declare int n

Declare int a = 0

Declare int b = 0

Read n from keyboard

While (a<n)

 While (b<n)

 print "I love CS"

 b++

 EndWhile

 a++

EndWhile

© 2023 Arthur Hoskey. All
rights reserved.

What is the

upper bound?

Analyzing Code

Analyze Code – Example 6

Declare int n

Declare int a = 0

Declare int b = 0

Read n from keyboard

While (a<n)

 While (b<n)

 print "I love CS"

 b++

 EndWhile

 a++

EndWhile

Answer: O(1) + O(n2) → O(n2)

© 2023 Arthur Hoskey. All
rights reserved.

O(1)

O(n2)

What is the

upper bound?

O(n2)

Analyzing Code

Analyze Code – Example 7

Boolean Search(int[] data, int target)

 Declare int startIndex = 0

 Declare int endIndex = data.length-1

 Declare int pivot

 While (startIndex<=endIndex)

 pivot = Floor((startIndex+endIndex)/2)

 if (target == data[pivot])

 return true

 else if (target>data[pivot])

 startIndex=pivot+1

 else

 endIndex=pivot-1

 EndWhile

 return false

© 2023 Arthur Hoskey. All
rights reserved.

What is the

upper bound?

Analyzing Code

Analyze Code – Example 7

Boolean Search(int[] data, int target)

 Declare int startIndex = 0

 Declare int endIndex = data.length-1

 Declare int pivot

 While (startIndex<=endIndex)

 pivot = Floor((startIndex+endIndex)/2)

 if (target == data[pivot])

 return true

 else if (target>data[pivot])

 startIndex=pivot+1

 else

 endIndex=pivot-1

 EndWhile

 return false

 Answer: O(1) + O(log n) + O(1) → O(log n)

 The pivot keeps getting divided in half, so it is logarithmic.

© 2023 Arthur Hoskey. All
rights reserved.

O(1)

O(log n)

O(1)

What is the

upper bound?

O(log n)

Analyzing Code

Analyze Code – Example 8

Declare int n

Declare int choice

Declare int i = 0

Enter choice from keyboard

If (choice == 1)

 print "I love CS"

Else

 Enter n from keyboard

 While (i<n)

 print "I love CS"

 i++

 EndWhile

EndIf

© 2023 Arthur Hoskey. All
rights reserved.

What is the

upper bound?

Analyzing Code

Analyze Code – Example 8

Declare int n

Declare int choice

Declare int i = 0

Enter choice from keyboard

If (choice == 1)

 print "I love CS"

Else

 Enter n from keyboard

 While (i<n)

 print "I love CS"

 i++

 EndWhile

EndIf

Answer: O(1) + O(n) → O(n)

 Even though the true part of the if may only run it is possible for the else to run.

 Since the else depends on the number of items, the whole if also depends on it.

© 2023 Arthur Hoskey. All
rights reserved.

O(1)

O(1)

What is the

upper bound?

O(n)

O(n)

O(n)

(whole if

statement)

Analyzing Code

Analyze Code – Example 9

void ShowMessage(int x)

 Declare int i = 0

 While (i<x)

 print "I love CS"

 i++

 EndWhile

Main

 Declare int n

 Enter n from keyboard

 ShowMessage(n)

© 2023 Arthur Hoskey. All
rights reserved.

What is the

upper bound?

Analyzing Code

Analyze Code – Example 9

void ShowMessage(int x)

 Declare int i = 0

 While (i<x)

 print "I love CS"

 i++

 EndWhile

Main

 Declare int n

 Enter n from keyboard

 ShowMessage(n)

 Answer: O(1) + O(n) → O(n)

 The amount of work to do in the ShowMessage method depends on the value
of parameter x.

 Main calls ShowMessage and passes in a value entered by the user (n), so the
amount of work that gets done in ShowMessage will depend on n.

© 2023 Arthur Hoskey. All
rights reserved.

O(n)

O(1)

What is the

upper bound?

O(n)

O(n)

Space Complexity

 Space complexity…

© 2023 Arthur Hoskey. All
rights reserved.

Space Complexity

Space Complexity

 Space Complexity - The total space used by the algorithm.

 Input Space – Memory space used by inputs.
◦ Variables used to store input data (these could be collections).

 Auxiliary Space – Any other memory used during execution of the
algorithm.
◦ Variables used in calculations.

◦ Extra collections that store copies of all the original data.

 n is the number of items we are processing.

 Taken from: https://en.wikipedia.org/wiki/Space_complexity

© 2023 Arthur Hoskey. All
rights reserved.

https://en.wikipedia.org/wiki/Space_complexity

Space Complexity

Space Complexity Example 1

Declare int[] ar

Read n pieces of data into

 ar from a file

For all data in ar (i is loop variable)

 print ar[i]

© 2023 Arthur Hoskey. All
rights reserved.

What is the upper bound

on space (give total,

input, and auxiliary)?

Space Complexity

Space Complexity Example 1

Declare int[] ar

Read n pieces of data into

 ar from a file

For all data in ar (i is loop variable)

 print ar[i]

Answer

 Input Space: O(n)

 Auxiliary Space: O(1)

 Total Space: O(n) + O(1) → O(n)

© 2023 Arthur Hoskey. All
rights reserved.

What is the upper bound

on space (give total,

input, and auxiliary)?

Space Complexity

Space Complexity Example 2

Declare int[] salary

Declare int[] salaryWithRaise

Read n pieces of data into

 salary from a file

For all data in salary (i is loop variable)

 salaryWithRaise[i] = salary[i] + 10

© 2023 Arthur Hoskey. All
rights reserved.

What is the upper bound

on space (give total,

input, and auxiliary)?

Space Complexity

Space Complexity Example 2

Declare int[] salary

Declare int[] salaryWithRaise

Read n pieces of data into

 salary from a file

For all data in salary (i is loop variable)

 salaryWithRaise[i] = salary[i] + 10

Answer

 Input Space: O(n)

 Auxiliary Space: O(n) + O(1) → O(n)

 Total Space: O(n) + O(n) → O(n)

© 2023 Arthur Hoskey. All
rights reserved.

What is the upper bound

on space (give total,

input, and auxiliary)?

There is an extra n element

array allocated

(salaryWithRaise) so O(n)

auxiliary space is used

Space Complexity

Space Complexity Example 3

void Show(int i, int[] a)

 If (i == a.length)

 return

 print a[i]

 Show(i+1, a)

Main

 Declare int[] ar

 Read n pieces of data into

 ar from a file

 Show(0, ar)

© 2023 Arthur Hoskey. All
rights reserved.

What is the upper bound

on space (give total,

input, and auxiliary)?

Space Complexity

Space Complexity Example 3

void Show(int i, int[] a)

 If (i == a.length)

 return

 print a[i]

 Show(i+1, a)

Main

 Declare int[] ar

 Read n pieces of data into

 ar from a file

 Show(0, ar)

Answer

 Input Space: O(n)

 Auxiliary Space: O(n) + O(1) → O(n)

 Total Space: O(n) + O(n) → O(n)

© 2023 Arthur Hoskey. All
rights reserved.

What is the upper bound

on space (give total,

input, and auxiliary)?

Show. There are n+1 calls to show (because of

recursion). Each recursive call allocates local

variables. So, n sets of local variables will be on the

call stack when the base case is reached. Calls to

Show cost O(n) auxiliary space.

Main. O(n) space for input and

O(1) space loop variables.

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Algorithms
	Slide 2: Today’s Lecture
	Slide 3: Categorizing Cars by Speed
	Slide 4: Categorizing Cars by Speed
	Slide 5: Categorizing Cars by Speed
	Slide 6: Categorizing Cars by Speed vs Asymptotic Analysis
	Slide 7: Categorizing Functions
	Slide 8: Categorizing Functions
	Slide 9: Comparing Functions
	Slide 10: Comparing Functions
	Slide 11: Manipulating Functions
	Slide 12: Manipulating Functions
	Slide 13: Asymptotic Analysis
	Slide 14: Asymptotic Analysis
	Slide 15: Asymptotic Notation
	Slide 16: Big O
	Slide 17: Big O
	Slide 18: Show f(n) is O(g(n))
	Slide 19: Show f(n) is O(g(n))
	Slide 20: Show f(n) is O(g(n))
	Slide 21: Showing O() Upper Bound
	Slide 22: In Class Exercise
	Slide 23: Show f(n) is not O(g(n))
	Slide 24: Show f(n) is not O(g(n))
	Slide 25: In Class Exercise
	Slide 26: Big Omega
	Slide 27: Big Omega
	Slide 28: Show f(n) is cap omega(g(n))
	Slide 29: Show f(n) is cap omega(g(n))
	Slide 30: Show f(n) is cap omega(g(n))
	Slide 31: In Class Exercise
	Slide 32: Big Theta
	Slide 33: Big Theta
	Slide 34: Show f(n) is, cap theta (g(n))
	Slide 35: Show f(n) is, cap theta (g(n))
	Slide 36: Show f(n) is, cap theta (g(n))
	Slide 37: In Class Exercise
	Slide 38: Asymptotic Notation Summary
	Slide 39: Limits
	Slide 40: Dominance
	Slide 41: Limits and Dominance
	Slide 42: Find Dominance Using Limit
	Slide 43: Dominance and Simplifying
	Slide 44: Much Less Than and Much Greater Than
	Slide 45: Selected Dominance Relationships
	Slide 46: Asymptotic Bounds and Input Data Cases
	Slide 47: Cases
	Slide 48: Bounds != Input Case
	Slide 49: Analyzing Code
	Slide 50: Math Review - log
	Slide 51: Math Review - log
	Slide 52: Math Review - log
	Slide 53: Math Review - log
	Slide 54: Math Review - log
	Slide 55: Math Review – log and exponential
	Slide 56: Analyzing Code - Overview
	Slide 57: Analyzing Code - Loops
	Slide 58: Analyzing Code – Methods
	Slide 59: Analyzing Code - Overview
	Slide 60: Analyzing Code
	Slide 61: Analyzing Code
	Slide 62: Analyzing Code
	Slide 63: Analyzing Code
	Slide 64: Analyzing Code
	Slide 65: Analyzing Code
	Slide 66: Analyzing Code
	Slide 67: Analyzing Code
	Slide 68: Analyzing Code
	Slide 69: Analyzing Code
	Slide 70: Analyzing Code
	Slide 71: Analyzing Code
	Slide 72: Analyzing Code
	Slide 73: Analyzing Code
	Slide 74: Analyzing Code
	Slide 75: Analyzing Code
	Slide 76: Analyzing Code
	Slide 77: Analyzing Code
	Slide 78: Space Complexity
	Slide 79: Space Complexity
	Slide 80: Space Complexity
	Slide 81: Space Complexity
	Slide 82: Space Complexity
	Slide 83: Space Complexity
	Slide 84: Space Complexity
	Slide 85: Space Complexity
	Slide 86: End of Slides

